
Supplement 
 

Depth variation and stereo processing tasks in natural scenes 
 

Arvind V Iyer1 & Johannes Burge1,2,3  
 

1. Department of Psychology, University of Pennsylvania 
2. Neuroscience Graduate Group, University of Pennsylvania 

3. Bioengineering Graduate Group, University of Pennsylvania 
 
 

 
Figure S1. Luminance contrast, binocular difference image contrast, and disparity contrast in natural scenes. A Distribution of 
luminance contrast for different spatial integration areas (colors). Larger luminance contrasts are more likely when computed 
with larger spatial integration areas (see Methods) B Distribution of binocular difference image contrast. Binocular difference 
image contrast is the contrast of the point-wise difference between the right- and left-eye windowed contrast images (see 
Methods). Low binocular difference image contrasts are associated with low disparity contrasts (see Fig. 10). C Distribution of 
disparity contrasts. Disparity contrast is approximately distributed as a power law, although the approximation breaks down at 
very small and large contrasts. The y-axis spans three orders of magnitude. Note that because the database of natural scenes 
from which these statistics are calculated contain no objects closer than 3.0m, and because the disparity associated with a 
given depth decreases with the square of distance, these distributions probably underestimate the frequency of high disparity 
contrasts. 
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Figure S2: Effect of disparity contrast on task-performance and size of task-optimal integration region A Half-occlusion 
sensitivity as a function of integration area for different disparity contrast intervals (colors). Arrows mark the spatial integration 
area (window full-width at half-height) for which half-occlusion detection performance is optimized. The analyses are the same 
as in Fig 5E but for a different choice of disparity contrast bins in arcmin. The dashed curve shows the d-prime obtained for the 
superset of stimuli in all disparity contrast intervals.  B Disparity-detection sensitivity as a function of integration area for 
different disparity contrast intervals (colors). Similar to A, but for the disparity detection task (see also Fig 7E) 
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Figure S3. Pixel-based disparity correlation maps. A Disparity correlations as a function of retinal position. The value at a 
location  x  is the Pearson correlation coefficent between the vector of disparity values occurring at pixel-location  x  across all 

stimuli, and the vector of all disparity values occurring at the center pixel   x0 . B Same as A, but conditioned on five different 
disparity contrast bins—0.1-1.0, 0.2-2.0, 0.4-4.0, 0.75-7.5, 1.5-15.0 arcmin—computed within a 1 deg area. At lower disparity 
contrasts, the correlation remains close to the maximum value of 1.0. . At higher disparity contrasts, the correlation decreases 
rapidly with eccentricity, and more rapidly with horizontal than with vertical offsets. C,D Horizontal and vertical slices through 
plots in A and B  for spatial offsets within 0.5 deg (solid & dashed curves, respectively). 
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Figure S4. Statistics of binocularly visible and half-occluded regions in natural scenes. A Distributions of half-occluded and 
binocularly visible region sizes computed from all images in the database. The distribution half-occluded region sizes is well 

described by a power law 
  
p x

j( ) = α
j
β

j

α j x
j

α j+1
 beyond ~0.1 deg (dashed line). The distribution of binocularly visible region 

sizes is well described by a power law beyond ~0.3 deg (solid line). Solid and dashed black lines show the best-fitting power-
law fits for the distributions of half-occluded and binocularly visible regions (α =-2.7 and α =-2.0, respectively). B Transition 
probabilities from half-occluded to binocularly visible regions (white dots) and from binocularly visible to half-occluded regions 
(black dots) as a function of region size. 
 

Consider a horizontal row of pixels     y = y1, y2 ,!, yM⎡⎣ ⎤⎦  where   yi ∈ 0,1{ }  and 0 denotes a half-occluded 

pixel and 1 denotes a binocularly visible pixel. Let the random variable 
 
X j  denote the length of a 

contiguous series of pixels of having value   j ∈ 0,1{ } . Specifically,   X0  represents the length of a 

contiguous string of half-occluded pixels, and   X1  represents the length of a contiguous string of 

binocularly visible pixels. In general, if 
 
X j  has probability density 

 
p j x j( )  and cumulative density 

 
Pj x j( ) , then the transition probability (i.e. the probability that the next pixel has the opposite label) for 

each region size is given by 
  
λ j x j( ) = pj x j( ) 1− Pj x j( )( ) . If the distribution of contiguous region sizes 

follows a power-law (e.g. a Pareto distribution of the first kind), then
  
p x j( ) =α jβ j

α j x j

α j+1  for all 
 
x j ≥ β j  

with shape parameter  α j  and scale parameter  β j which represents the minimum size. With this 

probability density, the transition probabilities are given by the power law 
  
λ j x j( ) =α j x j

−1 . Thus, the 

transition probability as a function of region size 
 
x j  falls linearly with slope -1.0 on a log-log scale within 

the region of support (Fig. S4B). This prediction holds for the transition probabilities in our dataset. 
 
For purposes of comparison, if the sequences of half-occluded and binocularly visible points were 
generated by independent coin flips (i.e. Bernoulli trials) instead of being drawn from the natural scene 

data, then the region sizes would be exponentially distributed 
  
p j x j( ) ∼ λ je

−λ jx j  and the transition 

probabilities  λ j  would be a constant independent of region size. The Pareto distribution provides a 
better description of the empirical region-size and transition probability data than the exponential 
distribution (Fig. S4A). 
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Figure S5: Effect of fixation distance and integration region size on binocular disparity standard deviation. A Effect of fixation 
distance on standard deviation of disparity signals within integration areas of different sizes (colors) centered on the fovea. 
Disparity standard deviation decreases monotonically with fixation distance. B Effect of integration area on disparity standard 
deviation for three different fixation distances (colors). Disparity standard deviation increases monotonically with integration 
area. Distance bins were 0.2 diopters wide. 
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Figure S6. Median disparities in the near foveal region. A The spatial map of natural disparity medians is symmetric about the 
vertical meridian. Uncrossed disparities occur exclusively at elevations above the horizontal median. Crossed disparities occur 
exclusively at elevations below the horizontal meridian. This pattern of disparities can be understood in terms of the typical 
structure of natural scenes where nearer fixations (yielding crossed disparities) occur most frequently at lower elevations 
where the ground-plane dominates. B Vertical horopter. A vertical slice in A at an azimuth of 0.0º shows a backward pitch with 
respect to the vertical, consistent with a previously reported property of the empirical vertical horopter known as the Helmholtz 

shear. The best-fit line is   δ median
= −0.0475e − 0.0028  where  e  is retinal elevation.  The top-back pitch of the vertical horopter 

is consistent with multiple psychophysical observations.  C Horizontal horopter. Median disparities along the horizontal median 
are more uncrossed at larger azimuths. A horizontal slice in A at an elevation of 0.0º is well fit by the parabola 

  δ median
= −0.022a2  where  a  is retinal azimuth.  The horizontal horopter’s deviation from the Vieth Müller circle towards 

uncrossed disparity is consistent with the Hering-Hillebrand deviation. 
 
It has been hypothesized that retinal corresponding points are positioned to be most often stimulated by 
surfaces in the world (Cooper, Burge, & Banks, 2011; Gibaldi, Canessa, & Sabatini, 2017; Helmholtz, 
1925; Schreiber, Hill, Filippini, Schor, & Banks, 2008; Sprague, Cooper, Tosic, & Banks, 2015). This 
hypothesis accounts for why the empirical vertical horopter is pitched back (i.e. the Helmholtz shear) 
and why the empirical horizontal horopter deviates from the Vieth-Müller circle (i.e. the Hering-
Hillebrand deviation). Under this hypothesis, median disparities along the vertical and horizontal retinal 
meridians constitute predictions of the empirical horizontal and vertical horopters. We computed the 
median disparities along the horizontal and vertical retinal meridians in our dataset (Fig. S4A-C). The 
median disparities exhibit the Helmholtz shear and the Hering-Hillebrand deviation, but smaller in 
magnitude from psychophysically reported values, consistent with the expectation that disparity 
reliability is underestimated because of the absence of objects nearer than 3m in our dataset.  
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Figure S7. Distributions of within-patch statistics. A The distribution of within-patch mean disparity, B standard deviation, C 
skewness, and D kurtosis, aggregated across all patches in the database. The most likely median and skewness are both 
zero, suggesting that the within-patch distribution is frequently symmetric about zero. The median skewness is near 0.0 and 
the median kurtosis is near 3.0, suggesting that within each patch, the median distribution of within-patch disparities is 
approximately Gaussian. This result suggests that the median within-patch distribution of disparities is well-approximated as 
Gaussian. However, for a given distribution to be approximately Gaussian, skewness and kurtosis need to take on the 
appropriate values within the same patch. To check, we computed the joint histogram of within-patch skewness and kurtosis. 
Results confirm that the median natural image patch is a nearly planar surface with Gaussian distributed disparities. 
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